New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding.
نویسندگان
چکیده
PAC-1 is an inducible, nuclear-specific, dual-specificity mitogen-activated protein (MAP) kinase phosphatase that has been shown recently to be a transcription target of the human tumor-suppressor protein p53 in signaling apoptosis and growth suppression. However, its substrate specificity and regulation of catalytic activity thus far remain elusive. Here, we report in vitro characterization of PAC-1 phosphatase activity with three distinct MAP kinase subfamilies. We show that the recombinant PAC-1 exists in a virtually inactive state when alone in vitro, and dephosphorylates extracellular signal-regulated kinase 2 (ERK2) but not p38alpha or c-Jun NH(2)-terminal kinase 2 (JNK2). ERK2 dephosphorylation by PAC-1 requires association of its amino-terminal domain with ERK2 that results in catalytic activation of the phosphatase. p38alpha also interacts with but does not activate PAC-1, whereas JNK2 does not bind to or cause catalytic activation by PAC-1. Moreover, our structure-based analysis reveals that individual mutation of the conserved Arg294 and Arg295 that likely comprise the phosphothreonine-binding pocket in PAC-1 to either alanine or lysine results in a nearly complete loss of its phosphatase activity even in the presence of ERK2. These results suggest that Arg294 and Arg295 play an important role in PAC-1 catalytic activation induced by ERK2 binding.
منابع مشابه
Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP.
Inactivation of mitogen-activated protein kinases (MAPKs) by MAPK phosphatases (MKPs) is accomplished via substrate-induced activation of the latter enzymes; however, the structural basis for the underlying mechanism remains elusive. Here, we report the three-dimensional solution structure of the C-terminal phosphatase domain of the prototypical MKP PAC-1, determined when bound to phosphate. St...
متن کاملSolution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2.
MAP kinases (MAPKs), which control mitogenic signal transduction in all eukaryotic organisms, are inactivated by dual specificity MAPK phosphatases (MKPs). MKP-3, a prototypical MKP, achieves substrate specificity through its N-terminal domain binding to the MAPK ERK2, resulting in the activation of its C-terminal phosphatase domain. The solution structure and biochemical analysis of the ERK2 b...
متن کاملS100A9 aggravates bleomycin-induced dermal fibrosis in mice via activation of ERK1/2 MAPK and NF-κB pathways
Objective(s): This study aims to investigate the pathogenicity and possible mechanisms of S100A9 function in mice models of scleroderma. Materials and Methods: The content of S100A9 in the skin tissues of mice with scleroderma was determined. Different concentrations of bleomycin (BLM) and S100A9 were subcutaneously injected into the backs of mice simultaneously, and then pathological changes i...
متن کاملDocking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
Mitogen-activated protein kinase (MAPK) cascades control gene expression patterns in response to extracellular stimuli. MAPK/ERK (extracellular-signal-regulated kinase) kinases (MEKs) activate MAPKs by phosphorylating them; activated MAPKs, in turn, phosphorylate target transcription factors, and are deactivated by phosphatases. One mechanism for maintaining signal specificity and efficiency is...
متن کاملMapping ERK2-MKP3 binding interfaces by hydrogen/deuterium exchange mass spectrometry.
ERK2, a prototypic member of the MAPK family, plays a central role in regulating cell growth and differentiation. MKP3, an ERK2-specific phosphatase, terminates ERK2 signaling. To understand the molecular basis of ERK2 recognition by MKP3, we carried out hydrogen/deuterium exchange mass spectrometry experiments to map the interaction surfaces between the two proteins. The results show that the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 354 4 شماره
صفحات -
تاریخ انتشار 2005